
 

Sensitivity Label: CGIF Internal 

 

 

Using machine learning to improve 
software identification 
Modern solutions to legacy challenges 
Ileana Gutierrez, David Crawford 
2024-10-09 



 

Sensitivity Label: CGIF Internal 

Table of contents 
1 Introduction ____________________________________________________________ 3 

1.1 Software identification challenges _________________________________________________ 3 
1.2 Capstone structure overview _____________________________________________________ 4 

2 GMU research __________________________________________________________ 4 
2.1 Problem statement ____________________________________________________________ 4 
2.2 Concept of operations and requirements ___________________________________________ 4 
2.3 Methodology _________________________________________________________________ 5 
2.4 SageMaker walkthrough ________________________________________________________ 5 
2.5 Designing, training and evaluation, Results _________________________________________ 7 
2.6 Conclusion ___________________________________________________________________ 7 

 

  

  



 

Sensitivity Label: CGIF Internal 

 

 

1 Introduction 
1.1 Software identification challenges 
Software developers have several robust software identification methods to choose from, including Common 
Platform Enumerations (CPE), Package URLs (PURL), Software Identification Tags (SWID) and Common 
Vulnerability and Exposures (CVE). 

However, substantial gaps in software product identification still exist. The gaps will persist until the software 
development community, encompassing both open-source and commercial developers (including cyber tool 
vendors) work together to establish standards for software identification. It is crucial to ensure consistency in the 
location of installed software identification information on devices. It is also unlikely that any one of the proposed 
standards will be adopted as a single standard for software identification.  

From our perspective, the specific method used is not of utmost importance. What truly matters is that the 
producer of the software implements one or more of the core methods (CPE, CVE, PURL or SWID). Secondarily, 
software asset inventory tools, and vulnerability tools need to support these standards. Additionally, it is crucial to 
adopt a standardized set of post-installation locations, which may vary depending on the platform, where 
cybersecurity tools and other applications can reliably locate the identification and inventory artifacts.  

It is evident that a fallback method will be necessary to create a reasonably accurate representation of the software 
identification in a generic format, using the discovered vendor, product, version, etc. The Department of Homeland 
Security’s Continuous Diagnostic and Mitigation (CDM) program has recognized the need for an alternative and 
has implemented a more generic approach. However, it is crucial to address the inconsistencies discussed below. 

Right now, while CPE is the presumed standard, few of the end point management or other tools used to provide 
software asset management accurately return CPE values that can be matched to the master CPE dictionary. 
Certain tools provide results in different formats of CPE, such as CPE 2.2 or CPE 2.3. However, even with 
wildcarding, the actual values of these CPEs do not match the ones in the master list.  

On the other hand, some tools return the expected attributes--vendor, product, version, etc.--but not in the form of a 
CPE-like object. Moreover, there is a notable lack of consistency in how the values for the attributes are 
represented, even within data from the same provider. The ability to directly match entries in the inventory of 
installed software items on an endpoint with the master CPE list greatly simplifies upstream activities, such as 
matching CVEs returned from a vulnerability scan to a specific software product. However, when there is no match 
or the match rate is low, it creates significant limitations in upstream activities. 

There is no easy fix to this, but coming to a consensus about both how software is to be identified on a device, and 
where that identification can be located by other tools would be a good starting point. 
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1.2 Capstone structure overview 
Over the 2023-2024 academic school year, CGI sponsored a cohort of George Mason University Cybersecurity 
Engineering seniors. The cohort was made up of Kiet Hoang Nguyen, Faris Issa, Arman Makar, Shaho Ahmed and 
Beni Mahato. The cohort worked on developing machine learning models to correlate software inventory data 
gathered from several cybersecurity tools with a pre-defined dictionary of known software products. The results of 
the cohort’s research were documented in their paper titled “Develop Machine Learning Models using AWS 
SageMaker”i. CGI Federal provided the GMU students an Amazon SageMaker environment to develop these 
machine learning techniques. 

During the first semester of the capstone project the students focused on learning how to use AWS SageMaker. 
SageMaker was also a new tool for some on the CGI team so there was a learning progression for both parties. 
The students followed a tutorial that AWS provided to get started with SageMaker. Team CGI provided the 
students with the domain, appropriate permissions and SageMaker workspace. Once the students started to get 
comfortable with the workspace, the datasets were introduced to them. With the datasets, the students started 
training their artificial intelligence model, tested different algorithms and researched ways to make SageMaker 
more efficient for the task at hand. As the end of the semester approached, they were able to create their first 
prototype. 

In the following semester the students made substantial progress with their model development. The initial plan 
was to use supervised machine learning to develop these models, but it was found to be more efficient to use 
unsupervised learning techniques due to the nature of the datasets. The students tried several approaches: a 
machine learning (ML) method, a non-ML method, and a hybrid approach mixing both. In the end, the students 
determined that the hybrid approach resulted in a higher match rate than either the ML approach or the non-ML 
approach. The hybrid approach used the ML method to pick from the top 1,000 choices for a given search 
parameter and the non-ML method (fuzzy matching) to find the best match. The shortcomings of the ML only 
approach were not investigated in depth. A basic analysis suggested that the ML approach could be improved by 
adjusting parameters of the model, combined with additional tuning. Time limitations precluded experimentation to 
determine if the initial analysis was correct. 

2 GMU research 
2.1 Problem statement  
The current methods of mapping software inventory data with a standardized list of software products are inefficient 
and are susceptible to errors. The current limitations are due to a range of issues, including the varied naming 
conventions used by different vendors and scalability issues due to the large data volumes. The research 
conducted in the GMU capstone project provides a potential solution to the problem above, leveraging 
unsupervised machine learning techniques to automate the correlation process. 

2.2 Concept of operations and requirements 
 

The students were tasked with using AWS SageMaker to train a machine learning model to match discovered 
software inventory data with a large (1.25M), curated dictionary of software data. The goal being to match as 
closely as possible based the following values: vendor, product, version, update, and edition. They used several 
steps to reach their desired outcome. They started with researching different machine learning algorithms for 
software inventory data correlation to level set. Once comfortable with SageMaker, the students used the datasets 

Hardy, Michael L 
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for training the models and deployment. The students were then able to develop a machine learning data-matching 
model to correlate software inventory data with a standardized dictionary of known products. 

 

2.3 Methodology 
The students took time to thoroughly study the datasets provided by CGI, which included software inventory data 
gathered from several cybersecurity tools and the master dictionary of known software products. These datasets 
are extensive in size, so it was another hurdle for the students to keep in mind when they were researching their 
algorithm selection and model development process. It was around this time, they found that the best approach 
would be to use unsupervised learning instead of the supervised learning due to the nature of the data.  

Once the students had clear understanding of the objectives of the project and the SageMaker environment, they 
began writing Python code using Jupyter Notebook within the SageMaker studio. At this time the students had a full 
understanding of the datasets, so they were able to decide on the algorithms they found were best for the project. 
They used fastText's Skip-Gram model due to its efficiency in text representation combined with the Approximate 
Nearest Neighbor (Annoy) library for efficient indexing and matching.  

The different techniques they used in the project were also a factor in their success: they created a cleaner 
software ID by merging five attributes into a unified identifier. They also used fuzzy matching “best match” 
techniques to refine and enhance matching accuracy at the post-processing stage.  

 

2.4 SageMaker walkthrough 
 

This section focuses on the technical aspect of how the students used 
SageMaker to yield their successful results. The first step the students 
had to take before training the model was preparing the data. This was 
done by removing the headers and converting the data the model uses 
from comma-separated values (CSV) format to text. After preparing the 
data, the students were able to proceed to training the model. The code 
snippet at right shows how the students used unsupervised learning to 
train their chosen model, the fastText's Skip-Gram model. We also see 
other training parameters, such as the epoch, minCount, and learning 
rate (lr). The epoch is the number of complete cycles through the entire 
training dataset. The minCount indicates the minimum times a word 
needs to be present in the dataset to be included in training. The learning 
rate (lr) is a hyperparameter that controls the degree of change to the 
model in response to the estimated error whenever the model weights are 
changed. 
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After training the data, the next step was to build the Annoy index. First, string embeddings, also known as vectors, 
had to be generated from the fastText model and training data. From there the students built the Annoy index with 
a choice of trees and metrics. This Annoy library is used to construct an efficient indexing system due to its 
capability to use angular distance for nearest neighbor calculations. This gives the students the ability to keep a 
high level of precision in the similarity searches. 

   

The last step was to find the best match. The students used the Annoy Index to return the top_k matches, in which 
they set to 1000. From there they were able to use the fuzzy matching algorithm on the top_k results and the 
candidate with the best score got returned as the best match. 
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2.5 Designing, training and evaluation, Results 
To create the prototype, the students had to prepare 
the data, select the appropriate algorithm (fastText 
Model) for the training, and utilize the Annoy Index for 
efficient nearest neighbor searches. After coming up 
with the top matches from the Annoy Index, in our case 
the top 1000 matches, they applied the fuzzy matching 
algorithm to the top results. From these results, the 
candidate with the best score was returned as the best 
match. The reason the students refer to it as their 
hybrid method is because the ML method picks from 
the top 1000 choices and the non-ML method finds the 
best match. The “hybrid method” approach the 
students came up with provides a suitable combination 
of accuracy and efficiency for the software inventory 
matching. It far exceeds the match-accuracy compared 
to previous methods of software matching.  

2.6 Conclusion 
The capstone project conducted by George Mason University's Cybersecurity Engineering students with guidance 
from our CGI Federal team showed great promise, representing a significant step towards using machine learning 
to address challenges in the efficiency managing software inventory data. By developing this unsupervised learning 
model, the results showed a highly effective match rate between cybersecurity tool data with a standardized 
software product list. This project is just a steppingstone; further improvements can be explored to enhance 
software identification in our evolving cybersecurity landscape. CGI intends to continue exploring methods utilizing 
machine learning and text matching schemes in this use case and others, in pursuit of greater matching between 
observed values reported by cyber security tools, and the related curated/master databases. 
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i “Develop Machine Learning Models in AWS SageMaker”, Nguyen, K., Issa, F., Markar, A., Ahmed S., Mahato, B., 
George Mason University, 2024, unpublished. 
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