

Sensitivity Label: CGIF Internal

Using machine learning to improve
software identification
Modern solutions to legacy challenges
Ileana Gutierrez, David Crawford
2024-10-09

Sensitivity Label: CGIF Internal

Table of contents
1 Introduction __ 3

1.1 Software identification challenges ___ 3
1.2 Capstone structure overview ___ 4

2 GMU research __ 4
2.1 Problem statement __ 4
2.2 Concept of operations and requirements ___ 4
2.3 Methodology ___ 5
2.4 SageMaker walkthrough __ 5
2.5 Designing, training and evaluation, Results ___ 7
2.6 Conclusion ___ 7

Sensitivity Label: CGIF Internal

1 Introduction
1.1 Software identification challenges
Software developers have several robust software identification methods to choose from, including Common
Platform Enumerations (CPE), Package URLs (PURL), Software Identification Tags (SWID) and Common
Vulnerability and Exposures (CVE).

However, substantial gaps in software product identification still exist. The gaps will persist until the software
development community, encompassing both open-source and commercial developers (including cyber tool
vendors) work together to establish standards for software identification. It is crucial to ensure consistency in the
location of installed software identification information on devices. It is also unlikely that any one of the proposed
standards will be adopted as a single standard for software identification.

From our perspective, the specific method used is not of utmost importance. What truly matters is that the
producer of the software implements one or more of the core methods (CPE, CVE, PURL or SWID). Secondarily,
software asset inventory tools, and vulnerability tools need to support these standards. Additionally, it is crucial to
adopt a standardized set of post-installation locations, which may vary depending on the platform, where
cybersecurity tools and other applications can reliably locate the identification and inventory artifacts.

It is evident that a fallback method will be necessary to create a reasonably accurate representation of the software
identification in a generic format, using the discovered vendor, product, version, etc. The Department of Homeland
Security’s Continuous Diagnostic and Mitigation (CDM) program has recognized the need for an alternative and
has implemented a more generic approach. However, it is crucial to address the inconsistencies discussed below.

Right now, while CPE is the presumed standard, few of the end point management or other tools used to provide
software asset management accurately return CPE values that can be matched to the master CPE dictionary.
Certain tools provide results in different formats of CPE, such as CPE 2.2 or CPE 2.3. However, even with
wildcarding, the actual values of these CPEs do not match the ones in the master list.

On the other hand, some tools return the expected attributes--vendor, product, version, etc.--but not in the form of a
CPE-like object. Moreover, there is a notable lack of consistency in how the values for the attributes are
represented, even within data from the same provider. The ability to directly match entries in the inventory of
installed software items on an endpoint with the master CPE list greatly simplifies upstream activities, such as
matching CVEs returned from a vulnerability scan to a specific software product. However, when there is no match
or the match rate is low, it creates significant limitations in upstream activities.

There is no easy fix to this, but coming to a consensus about both how software is to be identified on a device, and
where that identification can be located by other tools would be a good starting point.

Sensitivity Label: CGIF Internal

1.2 Capstone structure overview
Over the 2023-2024 academic school year, CGI sponsored a cohort of George Mason University Cybersecurity
Engineering seniors. The cohort was made up of Kiet Hoang Nguyen, Faris Issa, Arman Makar, Shaho Ahmed and
Beni Mahato. The cohort worked on developing machine learning models to correlate software inventory data
gathered from several cybersecurity tools with a pre-defined dictionary of known software products. The results of
the cohort’s research were documented in their paper titled “Develop Machine Learning Models using AWS
SageMaker”i. CGI Federal provided the GMU students an Amazon SageMaker environment to develop these
machine learning techniques.

During the first semester of the capstone project the students focused on learning how to use AWS SageMaker.
SageMaker was also a new tool for some on the CGI team so there was a learning progression for both parties.
The students followed a tutorial that AWS provided to get started with SageMaker. Team CGI provided the
students with the domain, appropriate permissions and SageMaker workspace. Once the students started to get
comfortable with the workspace, the datasets were introduced to them. With the datasets, the students started
training their artificial intelligence model, tested different algorithms and researched ways to make SageMaker
more efficient for the task at hand. As the end of the semester approached, they were able to create their first
prototype.

In the following semester the students made substantial progress with their model development. The initial plan
was to use supervised machine learning to develop these models, but it was found to be more efficient to use
unsupervised learning techniques due to the nature of the datasets. The students tried several approaches: a
machine learning (ML) method, a non-ML method, and a hybrid approach mixing both. In the end, the students
determined that the hybrid approach resulted in a higher match rate than either the ML approach or the non-ML
approach. The hybrid approach used the ML method to pick from the top 1,000 choices for a given search
parameter and the non-ML method (fuzzy matching) to find the best match. The shortcomings of the ML only
approach were not investigated in depth. A basic analysis suggested that the ML approach could be improved by
adjusting parameters of the model, combined with additional tuning. Time limitations precluded experimentation to
determine if the initial analysis was correct.

2 GMU research
2.1 Problem statement
The current methods of mapping software inventory data with a standardized list of software products are inefficient
and are susceptible to errors. The current limitations are due to a range of issues, including the varied naming
conventions used by different vendors and scalability issues due to the large data volumes. The research
conducted in the GMU capstone project provides a potential solution to the problem above, leveraging
unsupervised machine learning techniques to automate the correlation process.

2.2 Concept of operations and requirements

The students were tasked with using AWS SageMaker to train a machine learning model to match discovered
software inventory data with a large (1.25M), curated dictionary of software data. The goal being to match as
closely as possible based the following values: vendor, product, version, update, and edition. They used several
steps to reach their desired outcome. They started with researching different machine learning algorithms for
software inventory data correlation to level set. Once comfortable with SageMaker, the students used the datasets

Hardy, Michael L
We should explain, either here or in 2.3, 2.4 or 2.5, WHY the hybrid approach was found to be superior to the all-ML method. What were the shortcomings of ML in narrowing down the short list?

Sensitivity Label: CGIF Internal

for training the models and deployment. The students were then able to develop a machine learning data-matching
model to correlate software inventory data with a standardized dictionary of known products.

2.3 Methodology
The students took time to thoroughly study the datasets provided by CGI, which included software inventory data
gathered from several cybersecurity tools and the master dictionary of known software products. These datasets
are extensive in size, so it was another hurdle for the students to keep in mind when they were researching their
algorithm selection and model development process. It was around this time, they found that the best approach
would be to use unsupervised learning instead of the supervised learning due to the nature of the data.

Once the students had clear understanding of the objectives of the project and the SageMaker environment, they
began writing Python code using Jupyter Notebook within the SageMaker studio. At this time the students had a full
understanding of the datasets, so they were able to decide on the algorithms they found were best for the project.
They used fastText's Skip-Gram model due to its efficiency in text representation combined with the Approximate
Nearest Neighbor (Annoy) library for efficient indexing and matching.

The different techniques they used in the project were also a factor in their success: they created a cleaner
software ID by merging five attributes into a unified identifier. They also used fuzzy matching “best match”
techniques to refine and enhance matching accuracy at the post-processing stage.

2.4 SageMaker walkthrough

This section focuses on the technical aspect of how the students used
SageMaker to yield their successful results. The first step the students
had to take before training the model was preparing the data. This was
done by removing the headers and converting the data the model uses
from comma-separated values (CSV) format to text. After preparing the
data, the students were able to proceed to training the model. The code
snippet at right shows how the students used unsupervised learning to
train their chosen model, the fastText's Skip-Gram model. We also see
other training parameters, such as the epoch, minCount, and learning
rate (lr). The epoch is the number of complete cycles through the entire
training dataset. The minCount indicates the minimum times a word
needs to be present in the dataset to be included in training. The learning
rate (lr) is a hyperparameter that controls the degree of change to the
model in response to the estimated error whenever the model weights are
changed.

Sensitivity Label: CGIF Internal

After training the data, the next step was to build the Annoy index. First, string embeddings, also known as vectors,
had to be generated from the fastText model and training data. From there the students built the Annoy index with
a choice of trees and metrics. This Annoy library is used to construct an efficient indexing system due to its
capability to use angular distance for nearest neighbor calculations. This gives the students the ability to keep a
high level of precision in the similarity searches.

The last step was to find the best match. The students used the Annoy Index to return the top_k matches, in which
they set to 1000. From there they were able to use the fuzzy matching algorithm on the top_k results and the
candidate with the best score got returned as the best match.

Sensitivity Label: CGIF Internal

2.5 Designing, training and evaluation, Results
To create the prototype, the students had to prepare
the data, select the appropriate algorithm (fastText
Model) for the training, and utilize the Annoy Index for
efficient nearest neighbor searches. After coming up
with the top matches from the Annoy Index, in our case
the top 1000 matches, they applied the fuzzy matching
algorithm to the top results. From these results, the
candidate with the best score was returned as the best
match. The reason the students refer to it as their
hybrid method is because the ML method picks from
the top 1000 choices and the non-ML method finds the
best match. The “hybrid method” approach the
students came up with provides a suitable combination
of accuracy and efficiency for the software inventory
matching. It far exceeds the match-accuracy compared
to previous methods of software matching.

2.6 Conclusion
The capstone project conducted by George Mason University's Cybersecurity Engineering students with guidance
from our CGI Federal team showed great promise, representing a significant step towards using machine learning
to address challenges in the efficiency managing software inventory data. By developing this unsupervised learning
model, the results showed a highly effective match rate between cybersecurity tool data with a standardized
software product list. This project is just a steppingstone; further improvements can be explored to enhance
software identification in our evolving cybersecurity landscape. CGI intends to continue exploring methods utilizing
machine learning and text matching schemes in this use case and others, in pursuit of greater matching between
observed values reported by cyber security tools, and the related curated/master databases.

Sensitivity Label: CGIF Internal

i “Develop Machine Learning Models in AWS SageMaker”, Nguyen, K., Issa, F., Markar, A., Ahmed S., Mahato, B.,
George Mason University, 2024, unpublished.

cgi.com

https://www.cgi.com/

	1 Introduction
	1.1 Software identification challenges
	1.2 Capstone structure overview

	2 GMU research
	2.1 Problem statement
	2.2 Concept of operations and requirements
	2.3 Methodology
	2.4 SageMaker walkthrough
	2.5 Designing, training and evaluation, Results
	2.6 Conclusion

