
0 7 4 0 - 7 4 5 9 / 1 6 / $ 3 3 . 0 0 © 2 0 1 6 I E E E 	 NOVEMBER/DECEMBER 2016 | IEEE SOFTWARE � 15

Editor: Cesare Pautasso
University of Lugano
c.pautasso@ieee.org

Editor: Olaf Zimmermann
University of Applied Sciences
of Eastern Switzerland, Rapperswil

ozimmerm@hsr.ch

INSIGHTS

ARCHITECTS IN THE digital world,
such as software, enterprise, or solu-
tion architects, derive their role name
from architects in the civil-construction
world. The metaphor works on more
than one level: architects in both worlds
are responsible for conceptual (and
structural) integrity and are the content
leaders with overview over design and
realization, making key design decisions
and drawing blueprints.

However, the digital world differs
considerably from the civil-construction
world in at least one aspect. IT-based so-
lutions such as application software, IT
infrastructure, and IT services change
far more frequently then buildings do.
After all, bits and bytes are easier to
change than brick and mortar, right?

The definition of architecture in the
ISO/IEC 42010:2011 standard explic-
itly mentions evolution.1 Change is also
the central theme in modern software
development practices such as agile de-

velopment and DevOps. Nevertheless,
the digital-architecture disciplines seem
to be lagging behind a bit in this devel-
opment, perhaps hindered by the meta-
phor that gave them their name. My
recent experiences indicate that evolu-
tion and change should be given their
proper place in the digital-architecture
world. So, time should become a first-
class concept for architects of software,
infrastructure, services, enterprises, and
so on.

Issues with Time-Agnostic
Architectures
Many software-intensive systems are
part of a complex application landscape.
They form systems of systems or soft-
ware ecosystems with myriad interde-
pendencies between commercial and cus-
tom-made software, hardware platforms,
and organizational entities, all with their
own evolution cycles. Such landscapes
now occur in all industries: my experi-

Just Enough Anticipation
Architect Your Time Dimension

Eltjo Poort

A bit of planning is indispensable to anticipate events that will
affect your software’s risk profile. Traditional architectural planning
emphasizes the spatial dimension (for example, components
and connectors) but neglects the time dimension. Consulting IT
architect Eltjo Poort makes the case for an explicit representation
of architectural evolution along the time axis and reports on the
experiences with architecture roadmapping in his practitioner
community. —Cesare Pautasso and Olaf Zimmermann

INSIGHTS

16	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

ence ranges from banks and insur-
ance companies, to transport and
logistics, to safety, justice, and other
public-sector domains. In these land-
scapes, a time-agnostic architecture
is a perishable good: its best-before
date is often only weeks in the future.

I’ve observed issues such as these:

•	 architecture documents that are
perpetually “almost finished”
(delaying the projects dependent
on them) or are already obsolete
when they’re issued;

•	 development based on architec-
tural decisions that have already
been revoked (to address chang-
ing circumstances); and

•	 difficulty planning ahead,
caused by lack of insight into
architectural constructs’ time
dependencies.

One way to address such issues
is to design the solution’s evolution
into the architecture. At CGI, we
started developing this practice in
situations with many logical depen-

dencies, both inside and outside our
solution scope. (For more on dealing
with dependencies, see the related
sidebar.) As part of our risk- and
cost-driven architecture (RCDA) ap-
proach, we created architecture doc-
umentation that not only describes
the current situation and expected
future situation but also identifies
and deals with architecturally sig-
nificant events on the way from the
current situation to the future situa-
tion. (RCDA is a set of architecture
practices and principles CGI uses
to design IT-based solutions for cli-
ents in a lean, agile manner.2) These
events can be changes in the logical
dependencies, such as a feature be-
coming available on a service, or an
external system changing its behav-
ior. But, as the following examples
show, they can also be other occur-
rences that affect the solution’s risk,
cost, or business value.

Explicitly anticipating such events
not only helps address the issues just
identified but also is instrumental in
fulfilling architecture’s role as a risk

management discipline, by address-
ing time-triggered risks. This practice
also increases the documentation’s
practical value in cases in which the
future state turns out to be a moving
target. When the world keeps chang-
ing, documentation that acknowl-
edges change stays more relevant
than documentation that doesn’t.

Architecting Time:
An Evolution Viewpoint
According to ISO/IEC 42010:2011,
architecture documentation consists
of views that represent the architec-
ture from certain viewpoints. These
viewpoints aim to demonstrate to
stakeholders how the architecture
addresses a particular set of their
concerns. Philippe Kruchten’s 4+1
view model gives five good examples
of viewpoints that do this for com-
mon stakeholder concerns.3 How
about adding an evolution viewpoint
that shows how the architecture ad-
dresses the impact of changes in the
solution’s environment?

Nick Rozanski and Eoin Woods
introduced an evolution perspective
in which the architecture explicitly
considers change.4 One activity re-
lated to this perspective is to char-
acterize a system’s evolution needs.
To do this, an evolution viewpoint
first identifies future events that will
have an architectural impact on the
solution and then shows how the
architecture anticipates them. Con-
sidering architecture as a risk- and
cost-management discipline,2 we’re
interested in the events’ architectural
impact in economic terms: risk, cost,
and business value. Translating the
events’ direct technical impact into
those terms helps us communicate
about the events with business stake-
holders5 and helps us select the most
important events if we can’t deal
with all of them.

DEALING WITH DEPENDENCIES

Popular architectural styles such as service-oriented architecture (SOA) and
its microservices1 variant reduce the pain of ever-changing dependencies by
decoupling subsystems or components. SOA decouples applications in an IT
landscape by hiding their internal behavior behind service interfaces. Using the
right tools and protocols, such architectural styles achieve independent de-
ployability at the technical level.

However, these architectural styles can provide only limited relief regarding
logical dependencies. After all, a service’s consumers can never use a feature
that hasn’t yet been implemented in that service. If they need that feature,
they must wait, and the service might gracefully fail in the meantime. In other
words, logical dependencies are related to the arrow of time.

Reference
1.	 S. Newman, Building Microservices: Designing Fine-Grained Systems, O’Reilly, 2015.

INSIGHTS

	 NOVEMBER/DECEMBER 2016 | IEEE SOFTWARE � 17

Table 1 shows some typical events
and their architectural impact. As
you can see, most of them are as-
sociated with risks. This is inherent
in the definition of a “future event
with architectural impact” in two
ways. First, in a view of architec-
ture as a risk- and cost-management
discipline, an item’s architectural
significance is closely related to its
risk (and cost) impact.2 Second, any
point in time at which a solution’s
cost or value significantly changes
has a deadline-like nature, and every
deadline brings a risk of being too
late. In fact, a project’s risk register
is often a good source to search for
such time-triggered events that need
to be anticipated in the architecture.

The second step in characteriz-
ing the system’s evolution needs is
to identify backlog items for the so-
lution’s evolution, which will poten-
tially end up on the solution road-
map. At this stage, it’s important
to understand the dependencies be-
tween the solution architecture and
the architecturally significant events.
The backlog items should be linked

to the components, modules, func-
tions, nodes, and other architectural
elements they touch in the design. On
the basis of the dependencies between
architectural elements, backlog items,
and events, the architect can engage
in economic reasoning about the
roadmap with relevant stakeholders
such as product owners, project man-
agers, and product managers.

For an example of an architecture
roadmap visualizing these improve-
ment items, including their depen-
dencies on each other and on the
significant events, see the sidebar
“An Example of Architecture Road-
mapping.” The economic reasoning
is possible because we previously
identified future events’ impact on
the solution’s risk, cost, and business
value. For example, the team might
decide to take on some technical debt
to make a release deadline in time
for new reporting regulations com-
ing into effect, if their analysis shows
that the potential drop in the prod-
uct’s value (if the deadline is missed)
is greater than the interest incurred
by the technical debt. (Technical

debt6 is a metaphor Ward Cunning-
ham developed. The increased cost
of modifications due to work left un-
done in a system, such as refactoring
and upgrading, is compared to the
interest paid on a loan. Doing that
work is equivalent to paying back
the loan.) For more details on this
economic reasoning, see “Enabling
Agility through Architecture,”7
which describes these activities as
steps to achieve “informed anticipa-
tion” in software architecture.

Like other viewpoints, the evolu-
tion viewpoint can be a chapter in an
architectural description document
or a stand-alone artifact prepared
specifically for interested stakehold-
ers. Because this viewpoint aims to
deal with change and aims to work
in volatile environments, a more dy-
namic medium such as a project or
product wiki might also be suitable.

Anyone with concerns related
to change and planning is a stake-
holder of the evolution viewpoint—
specifically project, program, or
product managers; product owners;
and architects, designers, or develop-

TA
B

L
E

 1 Some future events with architectural impact.

Event When expected Impact type Impact

A competitor releases its next-
generation product.

4th quarter 2017 Risk + business
value

If we don’t match our competition’s new features, our own
product will be harder to sell, and we’ll lose revenue.

Microsoft discontinues Windows XP
support.

Apr. 2014 Risk Vulnerabilities are no longer patched. This implies a security
risk—for example, the risk of intrusion and data leaks.

Our Corilla license contract expires. May 2017 Cost We could reduce costs by switching to an open source
alternative.

A new version of Java EE (Enterprise
Edition) application servers (for IBM
WebSphere and JBoss) is released.

Nov. 2015 Cost We could reduce maintenance costs by using new features
announced for the next version of Java EE.

The project to build system Y finishes. 1st quarter 2017 Risk + business
value

System Y (which is interdependent with ours) will require
interface features that our solution currently doesn’t
support. We must build these features, or our solution will
lose its business value.

INSIGHTS

18	 IEEE SOFTWARE | W W W.COMPUTER.ORG/SOFT WARE | @IEEESOFT WARE

ers working on other solutions in the
same interdependent system of sys-
tems. The evolution viewpoint helps
the managers and product owners
plan ahead. By acknowledging future
events in the time dimension, it helps
fellow workers who depend on your
architecture, by telling them what as-
pects of the architecture will change
(for example, the integration hub or
interfaces) and when. The viewpoint

provides important input to project
management tools such as risk regis-
ters and Gantt charts, and to prod-
uct owners populating and prioritiz-
ing sprint backlogs in agile projects.

Experiences in
Architecture Roadmapping
The approach we just described has
been applied in parts of CGI since
2012. This roadmapping aims to find

the right balance between overantici-
pation and underanticipation in im-
plementing architectural constructs.
Architectural constructs are under-
the-hood parts of a solution. They
include things such as abstraction
layers, firewalls, or caching mecha-
nisms, which typically aren’t visible
to users but are needed to achieve
quality attributes such as modifiabil-
ity, security, or performance. Ove-

AN EXAMPLE OF ARCHITECTURE ROADMAPPING

Figure A shows the architecture
roadmap for a fictitious scenario; the
roadmap uses Philippe Kruchten’s
color-coding scheme for backlog
items.1 In this scenario, our competi-
tor has announced it will release a
next-generation version of its platform
BuyYourTripsHere.com in the fourth
quarter of 2017. Our team’s product
manager has identified a crucial fea-
ture (F in Figure A) that our product,
AdventuresBeyondBelief.com, must
have in place before the competitor’s
next-generation release: the ability to
check whether a hotel has free Wi-Fi.
If we don’t have that feature in place
in time, we expect a 25 percent mar-
ket share loss—a potential drop of
$250,000 in business value.

F is a functional feature but drives
architecture roadmapping because it
depends on an architectural improvement
(A in Figure A): our hotel communication platform must be upgraded to the latest version. Also, the free-Wi-Fi information must
be exposed on the back office’s integration hub (for example, an enterprise service bus), but we can’t achieve this in time.

The team decides to perform A and F in time to beat the competitor and to create a temporary solution bypassing the inte-
gration hub. This temporary solution means that the team will accrue technical debt, but we’ve estimated that the debt’s inter-
est will be much lower than $250,000. Refactoring (T in Figure A) to replace the temporary solution with a proper connection
over the integration hub is planned for the subsequent release.

Reference
1.	 P. Kruchten, R.L. Nord, and I. Ozkaya, “Technical Debt: From Metaphor to Theory and Practice,” IEEE Software, vol. 29, no. 6, 2012, pp. 18–21.

Release 1.3
Q1 2017

Release 2.0
Q2 2017

Release 2.1
Q3 2017

Release 2.2
Q4 2017

Release 2.3
Q1 2018

Project W
�nishes

New
reporting

regulations

Competitor releases
next-generation

platform

A

F

T

Technical-debt reduction

Architectural improvementUser feature

Defect removal

Dependency

FIGURE A. An architecture roadmap. F is a crucial feature (a website’s ability

to check whether a hotel has free Wi-Fi), A is a change necessary before F can

be implemented (an upgrade to a hotel communication platform), and T is the

payment of technical debt through refactoring.

INSIGHTS

	 NOVEMBER/DECEMBER 2016 | IEEE SOFTWARE � 19

ranticipation typically manifests it-
self in architectural constructs that
over time turn out to be less valu-
able than the trouble of creating
them was worth. (This phenomenon
is called YAGNI [you aren’t gonna
need it] in agile circles.8) Underantic-
ipation often occurs when architec-
tural constructs are implemented too
late, causing the solution to accrue
technical debt and making it increas-
ingly difficult to add features in an
evolutionary manner. Naturally, the
time dimension is crucial to achiev-
ing the right amount of anticipation.

Our architects have been using
architecture roadmapping in many
contexts and domains, for time
spans between one and six years
ahead. Their anticipation documents
are often quite informal, never called
an evolution viewpoint but rather a
“roadmap,” “decision support,” or
a “strategy document.” Their archi-
tectures typically take into account
these timed events:

•	 project or process milestones,
such as delivery and approval
deadlines, and deadlines in de-
pendent projects;

•	 product version or infrastructure
upgrades;

•	 business changes due to various
reasons—for example, changes
in external agreements (such as
Key Performance Indicators),
mergers or takeovers, or legisla-
tive or policy changes; and

•	 changes in the availability of
resources, including the avail-
ability of expertise.

These anticipated events generally
affect a combination of risk, cost,
and business value. For example, a
delivery deadline typically has impact
in terms of the cost of delay and risk
of losing customers. The introduction

of a product version upgrade could
add business value by supporting
new features. However, it could also
represent a risk if the product’s sup-
plier discontinues support for a previ-
ous version (or changes the product’s
backward-compatibility policy).

Our architects reported significant
benefits from making the time dimen-
sion part of their architecture in this
way. The benefits mentioned most
were improved (more realistic) stake-
holder expectations and better pri-
oritization of required architectural
improvements. This is because archi-
tecture roadmapping helps architects
articulate evolution scenarios’ busi-
ness impact. It also helps them discuss
the timing of architectural improve-
ments on the basis of that business
impact, rather than on the basis of
generic (and sometimes dogmatic)
“rules” such as YAGNI or “Do not
optimize prematurely.” Some of our
architects also stressed the impor-
tance of stakeholder communication
to identify anticipated events.

D ocumenting the time di-
mension part of your ar-
chitecture might look like

extra work. However, anticipation
should be a large part of your job as
an architect, anyway. If you commu-
nicate your anticipation as an evolu-
tion viewpoint or architecture road-
map, your architecture description
will stay valid longer. And, you’ll
have a ready answer when stakehold-
ers ask how you’ve addressed their
change and planning concerns.

References
1.	ISO/IEC 42010:2011, Systems and

Software Engineering—Architecture

Description, ISO, 24 Nov. 2011;

www.iso-architecture.org/42010.

2.	E.R. Poort, “Driving Agile Architect-

ing with Cost and Risk,” IEEE Soft-

ware, vol. 31, no. 5, 2014, pp. 20–23.

3.	P. Kruchten, “The 4+1 View Model

of Architecture,” IEEE Software, vol.

12, no. 6, 1995, pp. 42–50.

4.	N. Rozanski and E. Woods, Software

Systems Architecture: Working with

Stakeholders Using Viewpoints

and Perspectives, 2nd ed., Addison-

Wesley, 2011.

5.	J. Schulenklopper and E. Rommes,

“Why They Just Don’t Get It: Com-

municating about Architecture with

Business Stakeholders,” IEEE Soft-

ware, vol. 33, no. 3, 2016, pp. 13–19.

6.	P. Kruchten, R.L. Nord, and I.

Ozkaya, “Technical Debt: From

Metaphor to Theory and Practice,”

IEEE Software, vol. 29, no. 6, 2012,

pp. 18–21.

7.	N. Brown, R.L. Nord, and I. Ozkaya,

“Enabling Agility through Architec-

ture,” CrossTalk, Nov./Dec. 2010,

pp. 12–17.

8.	M. Fowler, “Yagni,” blog, 26 May

2015; http://martinfowler.com/bliki

/Yagni.html.

ELTJO POORT is a solution architect at CGI.

Contact him at eltjo.poort@cgi.com.

Selected CS articles and columns
are also available for free at
http://ComputingNow.computer.org.

